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This article summarizes the results of a literature search for adaptive numerical methods of 
solving partial differential equations; the methods discussed involve the adaptive movement of 
nodes, so as to obtain a low level of solution truncation error while minimizing the number 
of nodes used in the calculation. Such methods are applicable to the solution of nonstationary 
flow problems that contain moving regions of rapid change in the flow variables, surrounded 
by regions of relatively smooth variation. Flows with shock waves, contact surfaces, slip 
streams, phase-change interfaces, and boundary layers can be modelled with great precision 
by these methods. It will be shown that significant economies of execution can be attained if 
nodes are moved so that they remain concentrated in regions of rapid variation of the flow 
variables. i“ 1991 Academic Press. Inc 

1. ADVANTAGES OF USING MOVING-NODE ADAPTIVE METHODS 

Two of the most widely used methods of discretizing partial differential equations 
(PDEs) are finite elements and finite differences. Finite-element and finite-difference 
methods that use uniformly spaced nodes often waste computational effort because, 
in order to obtain acceptable truncation errors in regions of large solution varia- 
tion, much smaller node separations than are necessary in regions of negligible 
solution variation must be used. In the case of flows containing moving shocks, 
contact surfaces, and slip streams, only a very small portion of the domain requires 
small node separations; thus significant economies can be obtained by moving the 
nodes so that they remain concentrated about areas of large solution variation. 

In order to properly resolve a shock wave the node separation in the vicinity 
must be several times smaller than the shock thickness. The shock thickness is 
related to the value of the coefficients of the second-order spatial-derivative (or 
diffusion) terms in the PDEs, often being of the same order of magnitude as these 
coefficients. Hence, as the coefficients of the second-order terms are reduced, the 
shock thickness is reduced also. Nonzero coefficients are required to prevent 
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infinitely steep, and thus aphysical, shock fronts and allow a nonzero node separa- 
tion within a properly modelled shock. For commonly modelied physical scales and 
gas viscosities, physically accurate coefficients are usually extremely small and are 
in practice replaced by larger coefficients to allow larger node separations to be 
used. The use of adaptive methods allows much smaller node separations, and 
hence much smaller (more physically realistic) coefficients and much thinner shock 
waves, than can in general be accommodated by nonadaptive methods. The ability 
to use smaller coefficients in the second-order terms also results in a more realistic 
growth of the thickness of contact surfaces with time. It should be noted that much 
larger time-steps can be made when the nodes move with a shock wave than can 
be obtained with a fixed non-uniform grid; time derivatives evaluated in the moving 
frame tend to be constant or zero. 

The solution of the gasdynamics equations in inviscid form will always result in 
large truncation errors in the vicinity of a shock. Thus, for all true finite-element or 
finite-difference algorithms, either the algorithm is applied to the viscid form of the 
gasdynamics equations or some form of artificial or numerical viscosity is used as 
part of the algorithm. There are a few algorithms, such as the random-choice 
method invented by Glimm [ 11, that solve a Riemann problem as part of the solu- 
tion process; these algorithms can be used to solve the gasdynamics equations in 
inviscid form without the use of artificial or numerical viscosity. Even though the 
domain is broken up with nodes, as in a true finite-difference method, the Riemann 
problem solution technique is in essence an analytical procedure. Such methods 
allow quite large node separations without any oscillations near a shock; however, 
if modelling of the interior of the shock transition is desired, then the viscid gas- 
dynamics equations must be solved and much smaller node separations employed. 
Again, adaptive methods can be employed to advantage. 

2. REVIEW OF ADAPTIVE METHODS 

2.1. Introduction 

This review focuses on numerical PDE solution methods that move nodes so 
that they remain concentrated in regions of rapid variation of the solution. A 
contrasting group of methods, which adapt to the solution by adding new fixed 
nodes in regions of rapid change in the solution, will not be discussed because such 
methods are of limited utility in solving problems where the locations of the regions 
of rapid variation move with time; discussions of such methods, along with over- 
views of the entire field of grid generation, can be found in Thompson, Warsi, and 
Mastin [2, 33, Thompson [4], and Turkel [S]. Body-fitted coordinate systems are 
also discussed by these authors and are not covered in this review since emphasis 
will be placed on methods that move the nodes so as to adapt to solution 
properties rather than boundary properties. More specialized reviews of adaptive 
methods are given in Anderson [6], Thompson [7], and Eiseman [S]. 
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Most of the methods discussed in this review require that the PDEs have con- 
tinuous solutions. If the PDEs are nonlinear, as is usually the case, they will tend 
to develop discontinuous solutions unless they contain viscosity or analogous 
terms. Hence, most of the methods discussed will run into numerical problems 
unless viscous terms are included within the PDEs. 

As pointed out by Thompson [4], an adaptive-node method must have several 
ingredients: 

an orderly method of numbering (or mapping) nodes distributed over the 
physical region of interest; 

a means of “communicating” between nodes so that the distribution of nodes 
remains fairly regular as they are shifted; 

a means of representing the continuous solutions discretely and a means of 
evaluating the discrete values with sufficient accuracy; 

a measure of the error in the discrete values that bears some relation to the 
truncation error; 

a means of redistributing the nodes as indicated by the measure, so as to 
reduce solution error. 

Each of these ingredients is discussed in more detail in the text below. 
The numerical solution of a simple, nonlinear, ordinary differential equation 

(ODE) will be discussed in order to illustrate some of the concepts involved in the 
literature. Consider the equation 

(2.1) 

on the domain 0 <X< 1, where p is a small positive number and A(0) = x and 
A( 1) = /3 are the boundary conditions. It is easily seen that if dA/dX = 1, then the 
slope will tend to remain constant at unity, since the second derivative is then zero. 
However, except for very special values of a and fl, the slope must eventually depart 
from unity. For arbitrary values of M and p, the solution will consist of one or two 
regions with dA/dX= 1 and a region in which the solution varies rapidly so as to 
match the boundary conditions. The region of rapid variation will take the form of 
a boundary layer or a more centrally located stationary shock layer. The location 
of the layer can be predicted only by the use of extensive analysis. As p is reduced 
in size, the thickness of the layer is reduced proportionately and the values of the 
first and second derivatives within the layer become correspondingly large. 

Figure 2.1 illustrates the results of an unsuccessful attempt to solve Eq. (2.1) with 
c( = 4 and fi = 2, using a nonadaptive finite-element method with N = 171 fixed, 
equally spaced nodes. “A” was approximated using piecewise-linear basis functions, 
and the method of Galerkin was applied to Eq. (2.1). The value of p was initially 
set to 0.1, and a linear ramp with A’ = CI and AN = /I was used as an initial guess 
for the solution. The nodal values Ak were adjusted so as to minimize the Galerkin 
residual by using an iteration employing Newton’s method. The value of p was 
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FIG. 2.1. Nonadaptive solution with 171 nodes and p =O.OOlS; showing Gibbs’ oscillations. Only 
every fifth node is illustrated in the straight-line portion of the graph. 

reduced whenever the residual fell below a preset threshold. The region of rapid 
variation of the solution is of the order of p; as the value of p was reduced, there 
were eventually not enough nodes in this region to properly represent the solution, 
and hence a large truncation error was produced. Thus, even though 171 nodes 
were used, the solution with p = 0.0015 shown in Fig. 2.1 exhibits Gibb’s oscilla- 
tions. 

One may apply Taylor’s theorem to the discrete representation of an ODE in 
order to recover the original ODE. The higher-order terms in the Taylor series, 
which were not in the original ODE, represent the truncation error in the numerical 
solution. The nodes should be spaced close enough that these extra terms are 
negligible compared to the terms in the original ODE; otherwise one will obtain the 
numerical solution of an ODE with extra terms in it. Such considerations are 
especially important in the solution of the differential equations that occur in gas- 
dynamics. These equations possess second-order spatial derivatives with very small 
coefficients; the second-order terms can easily be swamped by the truncation error 
in first-order spatial derivatives contained in the differential equations. The proper 
solution to such differential equations often contains very rapid transitions in the 
form of shock waves or contact surfaces. If odd-order derivatives predominate in 
the truncation error (known as numerical dispersion), the extra terms can cause the 
new ODE to have an oscillatory behaviour (Gibbs’ oscillations) that the proper 
ODE did not possess, in the vicinity of the transition. If even-order derivatives 
predominate in the truncation error (known as numerical viscosity or numerical 
diffusion), excessively thick transitions can result. Many nonadaptive methods add 
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FIG. 2.2. Adaptive solution with 41 nodes and w =O.OOlS. 

an even-order artificial-viscosity term in regions of rapid solution variation so as to 
dominate odd-order truncation-error terms, and hence avoid Gibbs’ oscillations, 
but this also results in a physically invalid broadening of transition thicknesses. 

If an adaptive method is used, then nodes can be moved into regions of rapid 
solution variation so as to minimize the truncation error. Using an adaptive tinite- 

1 

FIG. 2.3. Adaptive solution with 41 nodes and I= 0.001; high-resolution plot of boundary-layer region. 
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FIG. 2.4. Adaptive solution with 41 nodes and ~=O.OOOOl; high-resolution plot of boundary-layer 
region. 

element technique, Eq. (2.1) was solved with the same boundary conditions as 
above, but employing only 41 nodes. Figures 2.2, 2.3, and 2.4 illustrate solutions for 
/L=o.O015, p= 10-3, and p = lo-‘, respectively. In order to adequately resolve the 
behaviour of the solution, only the region of the boundary layer is plotted in the 
last two figures. Note the complete absence of Gibbs’ oscillations for values of ~1 
more than 100 times smaller than the value that caused problems in the nonadap- 
tive solution. Analysis of the Newton’s method matrix used in the nonadaptive 
solution indicated that the matrix was always diagonally dominant in regions where 
the slope was approximately one, but less and less diagonally dominant as the slope 
varied from one, unless node separation was decreased in the region of rapid solu- 
tion variation. Nonsingularity of the matrices employed in a method is required to 
obtain a unique solution. Reducing the node separation in regions of large solution 
variation also minimizes the truncation error. An adaptive algorithm was devised 
in which the node separation was gradually increased in regions of near-unit slope, 
with the remaining nodes being equidistributed in the boundary or shock layer. The 
methods described in the following text all try to obtain this redistribution of nodes, 
with a minimal computational cost, so as to maximize solution accuracy. 

2.2. Overview of Adaptive Methods 

Many adaptive methods transform the PDEs for the physical variables (denoted 
by vector A) from physical coordinates (herein written (Xi, t)) for an i-dimensional 
physical space to i-dimensional computational coordinates (herein written (<;, t)) in 
which the nodes are equally spaced. An excellent account of such transformations 
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can be found in Thompson [9]. Integral values of the computational coordinates 
often correspond to the grid numbering; in such a case these coordinates are 
denoted by the phrase “numerical coordinates.” In some one-dimensional methods, 
there is an auxiliary transformation to slope coordinates that can be defined by 
dS= [l + lIdA/dX/I*]“* dX. 

A(<,, t) and X,(t,, t) are the unknowns in the computational coordinate system. 
The transformed PDEs contain additional terms of the form (~X,/~~)(I~A/I?X,), with 
the derivatives taken at a fixed computational coordinate. Each PDE for A is 
reduced to a set of ordinary differential equations in time (one ODE for each node) 
by application of a discretization method such as the finite-element or finite- 
difference formulations. The ODES can be written in the form 

dA” 
7=F’(r). (2.2) 

Here, A” is the value of the solution at node k, dAk/dr is its time derivative in the 
computational coordinate frame, and the details of the computation of Fk are deter- 
mined by the particular discretizing method used to reduce the PDEs to ODES. Fk 
also contains, in discretized form, the additional terms in (3X,/at)(aA/8Xj) that 
appear in the computational coordinate frame. Particular attention must be paid to 
the original placement of the nodes, so that spatial truncation error will not cause 
inaccurate initial estimates of dAk/dt. 

The ODES can be solved employing a time-stepping finite-difference method. The 
method may be time-explicit, in which case Fk(t) is evaluated at the current time 
level, or may be time-implicit, in which case the value of Fk(t) at an advanced time 
level is predicted as part of the solution algorithm. In general, implicit methods 
permit much larger time-steps than explicit methods without causing instabilities, 
but they require the time-consuming solution of matrix equations. As nodes are 
allowed to approach one another more closely, an implicit method eventually 
becomes essential. 

Given the time derivative of A” at each node, one can compute the value of A’ 
at the next time-step. Because dAk/dt can vary markedly from node to node, 
causing growth and decay of the solution in different sections of the domain, the 
system of ODES is often “stiff,” as discussed by Gelinas [lo]. A system is stiff if 
explicit methods of numerical solution must use very small values of time-step in 
order to maintain solution stability, even though accuracy limits may allow much 
larger time-steps; the root cause of the stiffness is that the numerical solution of the 
system contains decaying components that experience error growth if the time-step 
size is not limited severely. The drastic difference in ODE-solution time-constant 
from node to node causes some of the stiffness. A closely related cause for the 
stiffness is the fact that nodes approach one another very closely in regions of large 
solution variation, thus causing CFL limitation (first explained by Courant, 
Friedrichs, and Lewy [ 111) of time-step if an explicit method is used. In order to 
obtain reasonably large time-steps, the system of ODES must usually be solved by 
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implicit methods such as the backward-differentiation algorithm of Gear [12]. A 
version of the Gear method has been implemented by Hindmarsh [13], and this in 
modified form is available as an International Mathematical and Statistical Library 
(IMSL) subroutine. Enright, Hull, and Lindberg [14] discuss and compare a 
number of stiff-ODE solution methods. Some implicit methods applicable to PDEs 
that can be written in specific forms are discussed in Anderson, Tannehill, and 
Pletcher [15]. Kee, Petzold, Smooke, and Grcar [ 161 present an excellent discus- 
sion on the use of implicit methods in the context of adaptive solution of PDEs. 

A measure of the spatial truncation error is computed at intervals in the time- 
stepping solution of the PDEs. The measure is usually some grid-derivative function 
of X, and/or A in the computational-coordinate system. The derivatives are usually 
approximated by finite differences, and hence higher-order derivative estimates are 
highly susceptible to grid irregularities. Often some measure smoothing is attempted 
to reduce the effect of grid irregularities. Types of smoothing range from simple 
node-to-node derivative averaging [45-48, 105-l 131 to the creation of long-range 
internodal pseudoforces [9&92, 99-1041. Temporal smoothing has been applied in 
some methods [102-1041. In addition to taking error measures, some workers use 
measures of transformation smoothness C44-48, 50, 51, 55, 59-631, orthogonality 
[45-48, 50, 51, 59-63, 110-1131, or other transformation property [28, 42, 43, 
52-54, 64-87, 110-l 131 to control the quality of the node distribution. 

A bewildering variety of error measures is used in the literature, including change 
in the solution, or its derivatives of various orders, from node to node [23, 24, 28, 
29, 31-39, 55, 87, 90-96, 9991091; circular curvatures or torsions along lines of con- 
stant curvilinear coordinate [30, 44, 96, 110-l 133; solution slope lengths [28, 29, 
31, 33-39, 41, 44, 55, 1041; solution-property weighted cell volumes [59, 1 l&l 131; 
and complex combinations of the above [44, 96, 99-103, 110-l 131. In some cases 
the error measure is related to truncation-error expressions [25, 26, 28, 29, 57, 
64-87, 96-98, 114-1161; however, in many cases the authors have chosen their 
error measures heuristically and provide little or no justification for them. Many 
different measures have been used with some degree of success. In one-dimensional 
problems, a finite-difference method can be successful if it merely places many 
equally spaced nodes in regions of large error measure and smoothly increases the 
node spacing in regions of smaller error measure. A finite-element method does not 
require as smooth a change of node spacing and hence may require fewer nodes 
than finite-difference methods, which require continuity of all orders of derivative of 
the transformation aX/a[ at each node. Similarly, in two- or three-dimensional 
problems a finite-difference method requires a higher degree of grid smoothness and 
orthogonality than a finite-element method. Analyses of truncation error induced 
by grid deformation in finite-difference formulations are given in Mastin [ 171, 
Thompson and Mastin [lS], Kalnay de Rivas [19], Hoffman [20], and Hindman 
[21]. DuPont [22] has performed a partial error analysis of adaptive finite-element 
techniques. 

Most methods move the nodes to equidistribute a function of the measure at 
each node. Three basic styles of node movement have been used. 
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In periodic node movement, the nodes are held stationary in physical space for 
several time-steps, after which the measure is computed; the nodes are then shifted 
abruptly to their new positions. Data on Ak is usually moved from the old grid to 
the new grid by a method such as interpolation so as to prevent solution distortion 
or instability. 

In alternating node movement, the measure is computed after every time-step, 
and the nodes are shifted in response to the measure. New ODES are obtained, and 
the values of A” computed for the next time-step. Interpolation is often used to 
transfer data from the old to the new grid. 

In simultaneous node movement, the measures are taken and used to compute an 
ODE in time for Xf at each node. The nodes are not shifted between time-steps; 
rather, a set of ODES for Xp is solved along with the ODES for the physical solu- 
tion on each time-step, in order to simultaneously compute the new values of Ak 
and Xf in the next time-step. Interpolation of A data from the old grid to the new 
grid is not necessary in this case. 

In the periodic and alternating methods, terms in 8X,/& contained in the PDEs 
for A in computational coordinates are usually set to zero when the PDEs are 
solved on each time-step. However, it is better to obtain some nonzero value for 
dX,/at, as done by Klopfer and McRae [26] and Anyiwo [44], so as to allow node 
movement to effect the solution at each node. A variant form of alternating node 
movement is well suited to this approach; temporary values of Ak for the next time- 
step are computed on the old grid with fixed nodes. The temporary Ak determine 
new node positions and hence velocities. The node velocities are used in computing 
corrected A” values. 

Dwyer, Smooke, and Kee [35] have pointed out that simultaneous computation 
of node position and solution value converts a linear problem into a nonlinear one 
and usually makes a nonlinear problem harder. Thus, simultaneous node move- 
ment might appear to be less appropriate than the other two methods. In the 
solution of stiff problems, however, alternating or periodic node movement may 
result in instabilities owing the mismatching of node distribution and solution, 
unless time-steps are kept very small. 

2.3. Summary of Various Adaptive Methods 

Adaptive methods can be conveniently grouped in terms of the manner of 
redistribution of the nodes: redistribution to minimize or equidistribute the integral 
of the error measure, or redistribution by use of pseudoforces derived from the 
error measure. Specific details can be found in the summary that follows. In many 
ways, the classification is artificial and, as shown by Anderson [6], the formulas 
that finally evolve in either case have much in common. As much as possible, 
conceptually similar methods are treated sequentially. Some methods have 
been discussed in great detail as a basis for shorter accounts of related work. 
In general, critique of and commentary on the adaptive methods are reserved for 
Section 2.4. 
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Since variants of these adaptive methods have been used in time-independent 
problems, such as two-point boundary-value problems, some relevant adaptive 
ODE solution methods are reviewed. 

2.3.1. Methods Based on Minimization or Equidistrihution qf the Integral 
qf the Error Measure 

Gough, Spiegel, and Toomre [23] used an adaptive algorithm to solve two- 
point boundary-value problems. The one-dimensional ODE for a K-component 
dependent variable was transformed from the physical frame X to a frame t with 
uniform node separation and was written in central-difference form at each node. 
The system of equations obtained was solved using a Newton-Raphson iteration. 
An error measure based on the mth derivative of A, and X with respect to 5 was 
computed using 

(2.3) 

where A, is the kth component of the solution, and R, and X, -X0 are the maxi- 
mum changes over the l domain of Ak and X, respectively. The weighting constant 
1” was usually set to K. In practice, only E, and E, have been used as measures. 
The transformation from X to 5 was computed by solving an ODE obtained by 
minimizing the integral of E,, over the 4 domain. 

Node movement was alternated with the solution of the ODE for A, so 
as to obtain convergence to a final, highly adapted, and accurate solution. This 
alternating-node-movement procedure was claimed to be faster and more stable 
than solving ODES for A, and X simultaneously. The ODE based on E2 yielded a 
better truncation-error reduction than the ODE based on E,, but the first ODE 
required a better initial physical node distribution for its solution to converge. 

Pierson and Kutler [24] solved a one-dimensional problem in which a PDE was 
transformed from physical coordinates (X, t) to computational coordinates (<, t) 
with equidistributed nodes. The error measure was the square of the third derivative 
of the solution with respect to 5. The PDE was reduced to an ODE at each node 
by use of central differences. The ODES were solved time-step by time-step using an 
implicit finite-difference method. 

The nodes were moved every few time-steps so as to minimize the integral of 
the error measure, as approximated by the trapezoidal rule. The transformation 
between X and 5 was obtained by writing X as a finite series of Chebyshev polyno- 
mials in 5. Equations for the coefficient of the Chebyshev polynomials were 
obtained by requiring the above minimization, subject to constraints on maximum 
and minimum node separations, and solved by utilizing a simplex method. 
Truncation-error reductions achieved were equivalent to those obtainable using 
twice the number of fixed equidistributed nodes. 

Denny and Landis [25] adaptively solved a two-point boundary-value problem 
using, as an error measure, the leading truncation-error terms in a three-point 
finite-difference approximation to the ODE. The truncation-error terms were dif- 
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ferentiated with respect to the nodal coordinate in order to obtain a finite-difference 
formula for the nodal position that minimized the truncation error. The systems of 
equations for node-position and node-solution value were solved alternately in a 
manner similar to that of Gough et ul. [23]. As pointed out by Thompson [7], this 
procedure concentrates the nodes where the solution is smooth, rather than in high- 
gradient regions as would be desirable. 

Klopfer and McRae [26] adaptively solved a one-dimensional shock-tube 
problem using finite differences. The error measure was the leading term of the 
truncation error of the PDE transformed to computational coordinates (5, t). The 
node spacing 8X/a< was a linear function of the smoothed error measure E such 
that 

dX E - 
r?r’ 

ccl-- 
&?,X’ 

(2.4) 

The node-movement process was repeated after each time-step. The time derivatives 
of the nodal coordinates, X’, were computed from the changes in nodal position 
and included in the PDEs for the solution A. Artificial viscosity was used in the 
solution algorithm to stabilize the calculation. Since the explicit predictor-corrector 
scheme of MacCormack [27] was used, the minimum node spacing was limited to 
more than one-tenth of the maximum to avoid the development of excessive stiff- 
ness. Despite this limitation, Klopfer and McRae were able to use one-fifth of the 
nodes necessary for a nonadaptive calculation. 

White [28] solved a two-point, vector-valued boundary-value problem. The 
ODE for A was transformed from physical coordinate X to a computational frame 
<, where the integral of an error measure E was equidistributed. The transformation 
can be written in the form 

where 

fl= j”: E(x) dx. (2.6) 
x0 

Thus, the nodes were equidistributed in the 4 domain. The integral was manipulated 
to obtain ODES for X and 8 in the < frame. The ODES for A, X, and 8 in the 5 
frame were expressed in central-difference form and solved simultaneously, using a 
Newton-Raphson iteration. 

Various versions of the measure were used by White; these included solution 
arc length dS = [ 1 + /dA/dXI(*]” dX, local truncation error of the ODE, and 
weighted node-to-node change in the solution. 

White [29] extended the method for use in solving time-dependent problems. 
The equations for X and 0 in the (5, t) frame were written as 

(2.7) 
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and 

ad 
-=o 
at 

(2.8 1 

and then solved along with transformed PDEs for A time-step by time-step. Note 
that Eq. (2.7) puts a bound on the values of laX/agi and IlaA/agl/. Variables A, X, 
and 8 were written as an average of their values at the present and next time-steps, 
and the derivatives with respect to t were approximated by central differences. 
A Newton-Raphson iteration was used to solve the resultant system of equations. 

An approach that is very similar to that of White [28] was taken by Ablow and 
Schechter [30], who used the error measure 

E= 1 + 3. IQI, (2.9) 

where i is a weighting constant and Q is the circular curvature of the solution given 
by 

d2A/dX2 

Q = [ 1 + [dA/dX]2]3’2’ 
(2.10) 

The authors point out that, as a general rule, A and X should be normalized 
so as to be of approximately the same magnitude. The ODE for a fixed-point 
boundary-value problem was transformed to computational coordinates 4 having 
equidistributed error measure and nodes. A second ODE was obtained by differen- 
tiation of the equidistribution formula 

(2.11) 

with respect to 5. The two ODES were solved simultaneously in a manner similar 
to that of White [28]. 

Sanz-Serna and Christie [31] have used the method of White [29] as a starting 
point for their adaptive method. S, the solution arc-length, was approximated as 
the sum over all nodes of AS = [[AX]’ + [AA]‘] r12, where AX and AA are the 
change in spatial coordinate and in solution amplitude, respectively, between adja- 
cent nodes. New node positions were chosen so that S changed by an equal amount 
from node to node. A simple projection of the new value of S onto X was employed 
at each node. The solution was transferred from the old grid to the new grid by 
means of interpolation. A limit on the maximum ratio of AX at adjacent nodes was 
indirectly enforced by specifying a value /I such that for all intervals with [AA]’ 
less than p, the change in arc length was computed using AS = [[AX]’ + p] ‘12. 

Nonlinear, viscid, one-component model equations were solved using a variable 
time-step implicit finite-difference method. Node adaptation was alternated with 
time-stepping. One adaptive solution using 100 nodes was comparable in accuracy 
to a nonadaptive solution using 400 nodes. 
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Revilla [32] has used the same procedure as Sanz-Serna and Christie but with 
[dA]’ replaced by the absolute value of the change in AA between adjacent inter- 
vals. He reported an additional halving of the number of nodes required to match 
the results of nonadaptive solutions. 

In order to solve a time-dependent PDE, Dwyer, Kee, and Sanders [33], Dwyer, 
Raiszadeh, and Otey [34], Dwyer, Smooke, and Kee [35], Dwyer, Kee, Barr, and 
Sanders [36], Dwyer, Sanders, and Raiszadeh [37], and Dwyer [38,39] used a 
transformation from the spatial coordinate system (X,, X,, t) to the coordinate 
system (5,) t2, t) having an equidistributed integral of an error measure. Much of 
their work was based on the literature of adaptive solution of two-point boundary- 
value problems. An error measure E(Z) was used involving derivatives with respect 
to arc length Z along curves of constant 5, or t2 in physical space (dZ* = 
[dX,]‘+ [dx,]“): 

(2.12) 

Weighting factors AI or I.2 can be made large in order to equidistribute nodal 
differences in A or nodal differences in i3A/tlZ, respectively. 

The PDE was transformed from the physical coordinates (X,, X,, t) to computa- 
tional coordinates (4 ], t2, t) and was solved for A using an alternating-direct- 
implicit finite-difference method (an implicit iteration employing Newton’s method 
is used in one-dimensional problems). The error measure was taken and used in a 
coordinate transformation to move the nodes adaptively. The coordinate transfor- 
mation along each curve of constant l2 in physical space was 

s’,(X,, x2, 1) = 
so” E(z) dz 

jpX E(z) dz’ 
(2.13) 

Because movement after each time-step led to oscillations, the nodes were held 
stationary for several time-steps before an error measure was taken. Equation (2.13) 
was then solved for equally spaced values of {, by means of numerical quadrature 
so as to reposition the nodes. A bound on the ratio of node separation from 
element to element was used to maintain transformation smoothness. The solution 
was transferred from the old grid to the new grid by means of interpolation. A 
similar transformation could be used along a curve of constant t2, but Dwyer et al. 
[33-391 have adapted the node positions along only one set of numerical coor- 
dinates. 

One-dimensional versions of the method worked very well, giving truncation 
errors which were only obtainable by use of ten times the number of nodes in a 
nonadaptive calculation. However, in one two-dimensional problem solved by 
Dwyer et al. [33], solution oscillations occurred as portions of the grid developed 
increased skewness in physical space. The authors [33] suggested that the proce- 
dure of Potter and Tuttle [40] might be utilized to reduce the computed grid skew- 
ness. Potter and Tuttle move nodes along lines of constant 5, in order to define 
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lines of constant t2 on which a specified function of 5, satisfies Laplace’s equation. 
The curvilinear coordinate system produced is orthogonal. Dwyer et al. [33] also 
encountered problems in two dimensions when adaptation was permitted along 
boundaries; coordinate-system collapse occurred in a heat-transfer problem when 
Neumann boundary conditions were used. 

Dwyer and Onyejekwe [41] have incorporated the orthogonalization method of 
Potter and Tuttle in the adaptive solution of axisymmetric flow past a parachute- 
like body. Nodes were moved along one set of coordinate lines in response 
to the error measure and moved along the other set of coordinate lines to 
impose orthogonality. As the flow Reynolds number was merely 200, only a small 
amount of adaptation was required, but the number of nodes required to obtain 
an acceptable solution was reduced significantly and oscillations owing to grid 
skewness were eliminated. 

The grid adaptation and orthogonalization were performed in response to error 
measures resulting from an initial estimate of the solution computed using an 
implicit upwind-difference scheme on a stationary grid. The time-step was then 
repeated using an implicit central-difference scheme and, although left unstated, 
utilizing node velocities computed using the difference in node locations in the old 
grid and in the new grid so as to avoid errors induced by interpolation. 

Kansa, Morgan, and Morris [42] developed a method in which the nodes are 
moved so that the PDEs, when transformed to a numerical frame, have a minimal 
dependence on spatial derivatives and may therefore be easier to solve. The trans- 
formed K-component system of PDEs was written in the form 

aAk - =Gk-?!L+$cL. 
at < (2.14) 

In this equation, A, is one of the components of the solution; G, is a function of 
the solution components and the spatial coordinate X; and Fk is a function of X, 
the solution components, and gradients of the solution components. The last term 
in Eq. (2.14) results from the transformation from spatial coordinates to numerical 
coordinates where the nodes are stationary and equidistributed. One can define a 
velocity V, for each component, as given below: 

v = aFkIaX 

k aA,Iax’ 
(2.15) 

If the nodes are moved so that dX/dt = vk, then the PDE for component k is 
reduced to 

(2.16) 

At a shock wave, Eq. (2.15) is a restatement of the Rankine-Hugoniot jump condi- 
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tions, with V, being the shock velocity. Within a rarefaction fan, Vk is the velocity 
of the characteristics. At a contact surface, V’/k is the velocity of the gas. Owing to 
numerical inaccuracies, in a multicomponent problem, I/, will not, in general, be 
the same for all components. Kansa et ul. [42] chose the node velocities dX/dt to 
minimize 

(2.17) 

approximated by using a three-point-collocation polynomial to compute gradients 
(and using values of X at the unknown time level to make the expression implicit). 
The result was a tridiagonal-matrix equation for the node velocities. For each time- 
step, solution of Eq. (2.16) using an implicit finite-difference method that incor- 
porated artificial viscosity terms was alternated with the computation of node 
velocities. The nodes were remapped by means of interpolation after each time-step, 
so as to enforce a minimum node separation and prevent node crossing. Interpola- 
tion was also used to prevent excessive clustering of nodes about shocks: the nodes 
were moved in order to equistribute the magnitude of the third derivative of the 
solution times the cube of node separation. Use was made of the ideas of Dwyer 
and coworkers and also of those of Davis and Flaherty [ 1143. 

Kansa et al. [42] used their method, with 21 nodes, to solve a gas diffusion 
problem. It was stated that, if a nonadaptive method had been used to solve the 
same problem with equivalent accuracy, 670 nodes would have been required. 
Extension of the method to higher dimensions was also discussed. 

Ghia, Ghia, and Shin [43] have developed a method, similar to that of Kansa 
et al. [42], in which the nodes are moved so that a PDE, when transformed to a 
numerical frame, has a minimal dependence on first-order spatial derivatives. The 
model PDE for a one-dimensional problem can be written in the spatial frame as 

where F[X, A], G[X, A], and g[X] are functions of the indicated variables and p 
is a very small number analogous to the inverse of the Reynolds number. When 
transformed to the numerical frame the PDE can be written 

where 

(2.19) 

(2.20) 

In Eq. (2.19) the first-order spatial derivatives of the solution are isolated in the 
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right-hand side. If p is very small or, equivalently, if the Reynolds number is very 
large, it becomes very difficult, using a central-difference discretization of dA/X, to 
obtain a solution of Eq. (2.19) free of Gibbs’ oscillations unless the coefficient of 
aA/a[ is as small as or smaller than ,u in magnitude. Otherwise the truncation error 
in i?A/@ swamps the second-order term. The adaptive strategy consists of moving 
the nodes so that 

(2.21) 

Equation (2.21) was discretized using upwind differences for 8X/8( and solved for 
the velocity at each node using an implicit technique that required inversion of a 
tridiagonal matrix. The resultant node velocities were used to compute R (the 
residue of Eq. (2.20)), which was substituted into Eq. (2.19). Central differences 
were used to discretize both Eq. (2.19) and R (which would be zero only if central 
differences were used in computing the node velocities) and the same implicit 
technique was used to obtain a value for the time derivatives of the solution, A, at 
each node. The use of upwind differences in the first part of the algorithm enhanced 
stability. Stability was also enhanced by varying (probably increasing) the value of 
p used in Eq. (2.21) from that used in Eq. (2.20) so that not all nodes would enter 
the steepest portion of the solution but some would be forced out and made to 
round out the corners in the solution. If p were set to zero in Eq. (2.21), then the 
nodes would move to follow the characteristics of an inviscid model problem and 
would thus tend to cross each other inside shock waves as in the method of Kansa 
et al. [42]. As ,LI is increased, this tendency to cross is lessened. 

The method has been generalized to solve problems in two spatial dimensions. 
Both one-dimensional (using 51 nodes with values of p as small as 10p4) and 
two-dimensional (using 41 x 41 nodes with a Reynolds number as large as 667) 
problems have been solved. Time-stepping proceeded until the time-asymptotic 
solution emerged. Extremely smooth solutions were maintained throughout the 
time, integration. Very few iterations were required if only the steady-state solutions 
were desired. The method has not yet been generalized to solve multicomponent 
problems. 

Anyiwo [44] has used an adaptive method with a two-stage coordinate transfor- 
mation. The PDE is transformed from physical coordinates (X,, f) to orthogonal, 
curvilinear coordinates (S,, t), and thence to a computational space ([,, t) having 
equidistributed nodes. Anyiwo used an error measure E defined by 

E=exp(y)=exp i y, . F 1 i=l 
(2.22) 

That is, E is a product of factors given by 

Ej = exp(y,). (2.23 ) 
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yi, which is a measure of grid deformation in each coordinate direction, with 
weighted contributions from each coordinate system, is given by 

“J, = ilc(, 0, + i2 1%: + fifl Q, + i3cT3Q,. (2.24) 

j.‘, i2, and i,’ are weighting constants. af = l/Ni and 52, = l/ln(Ni - l), where Ni is 
the number of nodes in direction i in ({,, t) coordinates. CC;? and Pf are the circular 
curvature and torsion of curves of constant S, in physical coordinates, and 

CT3 = Is;\ + 1%; + p’1. (2.25) 

63, cc;, fl: are the slope, circular curvature, and torsion of the solution variable A 
in (Si, t) coordinates. o3 is replaced by a weighted sum of terms if A is a multicom- 
ponent solution variable. 

The transformation between the (Si, t) coordinates and the (ti, t) coordinates is 
obtained by requiring that, along each Sj direction, 

(2.26) 

which in essence equidistributes E over the nodes. The quantity aS,/~?g, is propor- 
tional to the separation between curves of constant Si in physical space. 

The transformation between the (X,, t) coordinates and the (S,, t) coordinates is 
given by 

dS, = cos(ei,) dX,, (2.27) 

where 8,, the angle between coordinate direction S, and coordinate direction X,, is 
constrained-cos( e,,) . cos(8,) = 0 if i #j-such that the (Si, t) coordinates are 
orthogonal. The variation of 8, is chosen so that the boundaries of the physical 
domain correspond to curves of constant curvilinear coordinate. A solution- 
weighted interpolation formula is used to compute 19,~ in the interior of the physical 
domain. 8, is calculated in response to the variation of as,/@; along the 5, direc- 
tion at each interior node in such a way as to blend in smoothly with the angular 
behaviour of the boundaries of the physical domain. Anyiwo described a simple 
interpolation procedure for use on two-dimensional grids. 

A typical time-step solution proceeds as follows. The error measure E is used to 
compute the metric transformation derivatives &S,/I?{~ at each node and hence the 
(S,, t) to (<,, r) coordinate transformation. The values of X?,/a[, are in turn used 
to determine the new values of 8, and hence of the (Xi, t) to (Si, t) coordinate 
transformation. The PDEs for the physical solution are transformed to the (5,, t) 
frame and solved for the next time-step values by use of a finite-difference scheme. 
The new solution and transformations are used to compute a new error measure. 
The cycle continues time-step by time-step. The time-stepping is omitted for several 
cycles at the start of a computation in order to obtain a grid adapted to the initial 
conditions. 
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An additional means of control of adaptation was obtained by inserting a nonzero 
value for aXi/& in the transformed PDEs for the physical variable. This value was 
obtained by requiring that the spatial coordinates satisfied a conservation equation 

ax. -.L 
at ; =V[-cux; +pVX,] 

in the (ti, t) frame, where c is a positive constant less than or equal to one. p is the 
viscosity coefficient, and U the advective velocity, for the physical solution PDEs. 
It is reported that Eq. (2.28) adds a constraint on node movement that maintains 
transformation smoothness. 

Brackbill and Saltzman [45, 461, Brackbill [47], and Saltzman and Brackbill 
[48], extending a boundary-adaptive automatic-grid generation method used by 
Winslow [49], transformed a two-dimensional PDE for the physical variable 
A from physical coordinates (X,, X1, t) to numerical coordinates (t,, tZ, t). 
A weighted sum of three error measures was used to determine the coordinate 
transformation. That is, 

E=I,E, +iu,,Eo+i,.E,., 

where 

Es= CR,l*+ CVt21* 

is a measure of transformation smoothness. 

(2.29) 

(2.30) 

J% = [VLt, %I’ (2.31) 

is a measure of grid orthogonality in physical space, or 

E,= [Vir, .V[,-yJ3 (2.32) 

is an alternate measure of grid orthogonality with increased weighting in regions of 
large Jacobian of the transformation 

J- ax, ax2 _ a-6 ax2 
at, at, x2 ah, (2.33) 

Regions of large Jacobian correspond to regions of large node separation in 
physical coordinates. The third measure, E,., is defined by 

E, = WJ, (2.34) 

where W is a measure of the truncation error in the solution and has been given 
as 

VA Q 
W=7 ) I I (2.35) 



272 HAWKEN, GOTTLIEB, AND HANSEN 

with Q being two or four in practice. W was averaged over several nodes and scaled 
between maximum and minimum values, so as to decrease the effect of grid 
irregularities on finite-difference approximations of VA. The Jacobian of the trans- 
formation, J, will tend to be small in regions of large W if E,. is equidistributed, and 
hence the grid will be refined in regions of large error measure. In this method the 
weighting constants i.,, , E.,, and i.,. were generally of the order of unity. 

The authors obtained a system of ODES for the spatial coordinates by using the 
calculus of variations to minimize 

(2.36) 

the volume integral of E transformed to numerical coordinates. Brackbill [47] also 
used a weighted-measure procedure to move nodes adaptively along boundary 
lines. One-dimensional analogues of E, and E,, were minimized over a boundary 
curve in order to obtain a system of ODES for the positions of the nodes along the 
boundary. 

The nodes were held stationary for several time-step solutions of the transformed 
PDEs for A. An explicit finite-difference method was used, with stability maintained 
by specifying a CFL limitation on time-step. The system of ODES for the spatial 
coordinates were then solved using a Jacobi iteration. Only a few iterations were 
needed for convergence. Information on the solution was transferred from the old 
grid to the new one either by means of an interpolation function or by solution of 
transport equations in conservation-law form. 

Excellent control of grid characteristics, so as to reduce solution error, was 
obtained by the authors. In one case, a nonadaptive, uniformly spaced grid solution 
required nine times the number of nodes used in an adaptive solution to obtain 
comparable accuracy. Saltzman and Brackbill [48] have applied the method to 
computation of nonsteady two-dimensional supersonic internal flow over a step. 

Anderson [SO] discusses a number of closely related adaptive techniques. Kreis, 
Thames, and Hassan [Sl ] report that performance of the method of Brackbill and 
Saltzman can be improved in certain problems with large spatial variation in J if 
E, = W/J, rather than E,. = WJ, is used for the solution-error measure. 

Yanenko, Kovenya, Liseikin, Fomin, and Vorozhtsov [52], Yanenko, Kroshko, 
Liseikin, Fomin, Shapeev, and Shitov [53], and Yanenko, Liseikin, and Kovenya 
[ 543 also used a transformation from physical coordinates (Xi, X,, t) to computa- 
tional coordinates (5,) t2, t). The error measure was of the form 

E=i,E,.+~~,E,+3.,.E,, (2.37) 

where 

(2.38) 
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is a measure of the transformation’s departure from conformality, with R as a small 
positive integral power, and where 

(2.39) 

is a measure of the degree to which the nodes move with the medium, in other 
words, the “Lagrangianness” of the transformation. (U,, U,) is the medium 
velocity, and (aX,/at, 8X2/&) is the grid velocity in physical space. E,. is a measure 
of the solution variation: 

E,. = WJQ. (2.40) 

Here, W is a weighted function of gradients of solution components, and Q is a 
small positive integral power. The Jacobian of the transformation, J, will tend to be 
small in regions of large W if E, is equidistributed, and hence the grid will be 
relined in regions of large error measure. 

A PDE in time-coordinates and space-coordinates for the transformation was 
obtained by minimizing the integral of E over X,, X2, and f. Alternately, in 
Yanenko, Liseikin, and Kovenya [54], a PDE in space-coordinates was obtained 
by minimizing the integral of E over X, and X2. This PDE was solved 
simultaneously with the PDE for A using a time-stepping finite-difference method. 
Yanenko et al. [52, 541 also discussed adaptation along a single coordinate 
direction. 

Hindman and Spencer [SS], inspired by the boundary-adaptive automatic-grid 
generation method of Winslow [49], have developed a one-dimensional adaptive 
method in which the transformation from the spatial coordinates (X, t) to computa- 
tional coordinates (& t) (where tk = k/N and k ranges from 0 to N) satisfies a one- 
dimensional Poisson equation 

,‘zp-p, 
G’x’ - (2.41) 

In this equation, P= P(t) ‘is a forcing function that is large in regions where 
it is desirable to concentrate nodes. The formulation leads to a basic method of 
estimating node velocities. The problem, transformed to the numerical frame. 
requires the solution of 

(2.42) 

subject to the boundary conditions X((O) =X0 and X(<‘“) = XN. 
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Hindman and Spencer point out that an equation in the form of (2.42) can be 
obtained by taking the second derivative with respect to 4 of the expression 

x 
<(X, t) = const i E dx. (2.43) 

X” 

This mapping of 4 onto X was inspired by the adaptive method of Dwyer, Kee, and 
Sanders [33]. The integrand is an error measure of the form 

E=l-t-iW, (2.44) 

where @= aA/LJg is the slope, in the numerical frame, of the solution of a single- 
component PDE used to test the adaptive method. Comparison of Eq. (2.42) to the 
result of differentiating equation (2.43) twice implies that 

i aE ax 2 i p=-- - 
jl 1 aw ax -2 =~- - 

EC?< i?i” L 1 i+Rw at ag 
(2.45) 

Hindman and Spencer deduced an alternate form of the forcing function by 
requiring that the integral 

(2.46) 

be minimized. This procedure was inspired by the work of Brackbill [47]. The 
first term in the integrand promotes smoothness of the transformation, while the 
second term promotes concentration of nodes in regions with a large value of 
W= [aA/a[]‘. The calculus of variations is applied to the integral to yield an 
PDE in 4 and at/ax for the transformation. The solution, 

-2[$] ‘+jW[$J2=const, (2.47) 

of the PDE is differentiated with respect to 4, to obtain an equation that can be put 
in the same form as Eq. (2.42) if 

_ awax 
P=Azz! 2+21,W ag 

‘( 
ax 3 F I> . (2.48) 

Only the first form of the forcing function has been used for an actual calculation. 
It should be pointed out here that an alternate definition of W= [aA/aX]’ would 
be more consistent with the usage of Dwyer, Kee, and Sanders [33] and Brackbill 
[471. 

Following the boundary adaptive method of Hindman, Kutler, and Anderson 
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[56], rather than solving Eq. (2.42) directly, Hindman and Spencer differentiate the 
equation with respect to time to obtain 

(2.49) 

where k is the node velocity and P is the derivative of P with respect to time at 
fixed computational coordinate. The equation above is approximated by central 
differences at each node. The central-difference expression for P is expanded in 
terms of k and k and the PDE for A used to eliminate the value of k at each node 
from the expression. The resulting equations at each node are manipulated into a 
matrix equation for node velocities. The matrix is tridiagonal since P”, the value of 
the forcing function at node k, depends only on the values of X and A at nodes 
k- 1, k, and k+ 1. 

The original PDE for A was transformed to the computational coordinate system. 
A time-stepping algorithm was applied in an alternating manner to the transformed 
PDE and to the matrix equation for the node velocities. The time-stepping algo- 
rithm used was either an implicit first- or second-order accurate method or the 
explicit second-order accurate predictor-corrector method of MacCormack [27]. 
There was a tendency for the nodes to drift out of optimal adjustment despite the 
use of the matrix equation for the node velocities. To compensate for this, the node 
positions were periodically adjusted using a tridiagonal matrix equation based on 
the approximation of Eq. (2.42) by central differences. The initial placement of the 
nodes also satisfied Eq. (2.42). 

A number of single-component test problems were solved using the adaptive 
method, and the results were compared to those obtained employing a grid with 
fixed nodes. In all cases the adaptive grid provided better results, but the solutions 
exhibited numerical oscillations on both the adaptive and nonadaptive grid because 
not enough nodes were used to resolve the solutions properly. Hindman and 
Spencer discuss a theoretical extension of their method to solve two-dimensional 
problems but have not yet performed any two-dimensional calculations. 

Petzold [57] uses a more direct approach to computing adaptive node velocities 
and has applied her method- to the solution of one-dimensional multicomponent 
PDEs. The method developed by Petzold generalizes and extends earlier work by 
Hyman [58]. Petzold obtains an equation for the node velocities by minimizing the 
measure: 

I= c &i-q* + IIA”lj’, 
k 

consisting of the sum over all nodes of the square of the node velocity and the 
square of the vector norm of the time derivative of the solution at fixed node 
number. w is a weighting constant. The second term is expressed as a function 
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of node velocity by transferring the model PDE to the frame where the nodes are 
stationary and approximating the PDE by spatial central differences to obtain 

i3Ak ?'A" 
ax ' l?x' 1 . 

(2.51 ) 

The equation for the velocity of node k is obtained by differentiating the measure 
with respect to the velocity of node k to obtain 

ZAk &pfAk .=- - 0. (2.52) 

The intent is to minimize the time-rate of change both of the solution and of the 
node coordinate in the moving frame so that large time-steps can be taken. Petzold 
added an extra term to the equation above to discourage node crossing. The addi- 
tional term is the result of the minimization of an auxiliary “penalty” function that 
becomes large when node separation approaches zero. The “penalty” function may 
be interpreted as diffusing the mesh velocity. The transformed model PDE and the 
equations for node movement form a system of ODES, which is solved using an 
implicit ODE solver. Petzold discusses the effect of variant forms of the system of 
ODES on the stability of the solution. 

The penalty functions are unable to completely prevent node crossing but 
increase the size of time-step that can be taken without the nodes crossing. After 
every time-step, a reference node distribution is computed by requiring that the 
local node spacing be adjusted to make the quantity 

(2.53) 

less than a specified tolerance and that the number of nodes be the smallest able to 
fulfill the tolerance condition. The new grid is based on a comparison between the 
old grid and the reference grid in such a way that most nodes are not moved and 
nodes are seldom added or deleted. Thus, interpolation to transfer the solution 
from the old grid to the new grid need only be applied to a few nodes at any time- 
step. 

One nonlinear viscid model two-component equation was solved using 57 nodes 
with an accuracy comparable to that obtained by a nonadaptive solution using 600 
nodes. If Eq. (2.53) was used without computing node velocities, the same problem 
took 17 times as many time-steps to solve. 

Carcaillet, Dulikravich, and Kennon [59] have devised a method that constructs 
the sum, over all nodes, of measures of grid smoothness, grid orthogonality, and 
solution smoothness. A simplex procedure is applied to the sum to adapt a 
rectangular grid. The method is an extension of the work of Hayes, Kennon, and 
Dulikravich [60] and Kennon and Dulikravich [61], which used the first two 
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measures only and which was inspired by the method of Brackbill and Saltzman 
[46]. The value of the three measures are calculated at a given node as follows. 

The area of the four cells adjacent to the node is computed. Grid smoothness at 
the node is monitored by computing the sum of the squares of the differences in 
area of cells with common borders. The sum will be zero if all adjacent cells are of 
equal area. 

The relative-position vectors of adjacent nodes connected by grid lines are also 
computed. The four relative-position vectors with origin at the given node are used 
to form four dot products, which are squared and summed to monitor 
orthogonality at the node. The dot products are chosen so that their sum will be 
zero if the grid is locally orthogonal. 

Solution smoothness is monitored at the node by approximating the following 
error measure; the area of the four cells connected to the node multiplied by a func- 
tion of the gradient of a solution component. The function is of the form of 
Eq. (2.35) with Q given the value of two. To reduce computational effort, only an 
approximation to the above is used. It is computed as follows. The square of the 
magnitude of each of the four relative-position vectors originating at the node is 
multiplied by the average value of the function in the two cells to each side of the 
relative-position vector. The four results are summed. The function values are 
manipulated to limit variation of cell areas. 

The sums at all the nodes are totalled to form a global measure of grid quality, 
which is analogous to the volume integral of Brackbill and Saltzman [45548]. A 
nonlinear simplex procedure is used to vary the node positions until the measure 
is minimized. The method is quite robust, as is demonstrated by its ability to 
orthogonalize a grid deliberately tangled with overlapping grid lines in order to 
produce regions of negative Jacobian of the transformation. Orthogonalization 
methods using a differential equation to compute node positions, such as that of 
Brackbill and Sal&man, would be unable to deal with an initial grid containing 
regions of negative Jacobian. 

The method of Carcaillet et ul. [59] has been used to adapt a grid to the time- 
asymptotic solution of a single component PDE. It is able to reduce error to at 
least a sixth of that obtained with a nonadaptive grid with the same number of 
nodes. Carcaillet et al. plan to apply their method to the iterative time-asymptotic 
solution of transonic flow problems with shocks. Procedures for transferring 
information from the old grid to the new grid are under study. 

Kennon and Dulikravich [61] and Carcaillet, Kennon, and Dulikravich [62] 
extended the grid-property measures to three-dimensional grids. Carcaillet, 
Kennon, and Dulikravich [62] and Kennon and Dulikravich [63 J used a modified 
grid-smoothness measure to achieve clustering of nodes about specified lines, 
surfaces, or three-dimensional regions. 

Miller and Miller [64] and Miller [65] devised a linite-element-based PDE 
solution technique, which they call the moving finite element (MFE) method. The 
method has been further developed in Djomehri and Miller [66], Gelinas, Doss, 
and Miller [67], Gelinas, Doss, Vajk, Djomehri, and Miller [68], Gelinas and 
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Doss [69-71-j, Gelinas, Doss, and Carlson [72], Djomehri [73], and Miller 
[74, 751. In this method the error measure may be interpreted as being the square 
of the residual of the PDE written in finite-element form. ODES for the nodal value 
of the physical variable and the nodal coordinate are obtained by minimizing the 
integral of error measure over spatial coordinates. Only the simplest one-dimen- 
sional version will be described (and reformulated) herein, but the method has also 
been applied in two dimensions. 

The method is most simply described in numerical coordinates where the trans- 
formed one-dimensional PDE for a single component physical variable A can be 
written as 

The continuous solution, A, and physical coordinate, X, are approximated by the 
piecewise linear functions A” and X” given by 

N 

A”= 1 cr”(i”) Ak(t) (2.55) 
x=1 

and 

x”= 1 ak(() X”(t). (2.56) 
i=I 

The coefficients Ak and X” are the values at each node k of the solution and of the 
spatial coordinate, respectively. a k is the basis function at node k. Note that, in 
what follows, tk - E” ’ = 1. In this simplest formulation of the MFE method, ak is 
a linear “hat” function defined by 

Since the nodes are allowed to move, it can be shown that 

(2.57) 

(2.58) 
k-l 
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where /I” is a second basis function defined by 

(0 if t<tk~’ 

with 

Mk=Ak-Ak ’ 
Xk--k-l’ 

(2.59) 

(2.60) 

A set of ODES for Ak and Xk at each node was obtained by minimizing the integral 
of the square of the residual of the PDE, with X and A replaced by their discrete 
representations, Xh and Ah. The minimization was obtained by requiring that 

a aI -=-= 
akk aj-k 

0 (2.61 ) 

for all nodes k. where 

It should be noted that PDE terms containing the second derivative with respect 
to r can be reduced to integral terms containing the first derivative with respect to 
{ by using suitable manipulation and integration by parts. The resultant integral 
equations are 

and 

The basis functions ak and pk act as test functions over the domain of integration. 
The integrals can be manipulated to yield a system of ODES. The ODES can be 

written in the matrix form 

[D]ir=E. (2.65) 

[O] is a block tridiagonal matrix and ir a column vector containing the values of 
k and 2 at each node. E, also, is a column vector. Additional terms are added to 
[O] and E to prevent excessive node speed or the crossing of node positions and 
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time-stepping algorithms. The size of the matrix equation associated with the use of 
an implicit time-stepping algorithm is not reduced by the simplification. 

Mueller and Carey [77, 781 extended the work of Miller and Miller [64, 651 by 
using piecewise polynomial basis functions and a different form of penalty function. 
Their method was applied to a number of scalar one- and two-dimensional 
problems that required modest adaptivity. 

Herbst, Schoombie, and Mitchell [79, SO] and Herbst and Schoombie [Sl ] 
extended the work of Miller and Miller [64, 651 by using piecewise Hermite cubic 
polynomials, in place of the test functions c? and /I” used in Eqs. (2.63) and (2.64), 
while retaining the basis functions uk and 8” in Eqs. (2.55) (2.56), and (2.58). 
Herbst, Schoombie, Grifliths, and Mitchell [82] have analyzed their method and 
that of Miller and Miller and conclude that both methods tend to equidistribute the 
spatial second derivative of the solution over the grid. The error resulting from use 
of piecewise cubic test functions was significantly reduced in comparison to that 
resulting from use of piecewise linear test functions. Mitchell and Herbst [83] 
discuss the applicability of moving finite element methods to various types of 
one-dimensional problems and point out difficulties associated with the solution of 
two- or three-dimensional problems. 

Wathen and Baines [84] have reformulated the method of Miller and Miller 
[64, 651 so as to avoid the use of penalty functions. They point out that, for many 
hyperbolic PDEs, time-step is not limited by stability considerations if the nodes 
move with the characteristics of the solution. The solution at a node remains 
constant as the node moves at a constant velocity. Hence, large time-steps can be 
obtained even if the ODE solution method is explicit, The use of penalty functions 
in the MFE method to ensure nonsingularity of the matrix [O] stops the MFE 
method from moving the nodes along characteristics; hence a stiff ODE solver is 
required. 

A single-component one-dimensional version of the method of Wathen and 
Baines is most easily described. The MFE method matrix [O] is expresed in the 
form [M]’ [C][A4], where [M] and [C] are matrices and [M]’ is the trans- 
pose of [Ml. [C] is singular only if nodes are coincident, and [n/l] is singular 
only if regions of constant slope, where the nodes are collinear, exist. 

If two nodes approach one another closely and are about to cross, matrix [C] 
is modified to introduce a moving boundary containing a shock transition between 
two coincident nodes. Any node that subsequently enters the shock is eliminated 
from the calculation. 

If three adjacent nodes are collinear, then the matrix equation is modified to 
make the velocity of the middle node zero when the matrix equation is solved. The 
zero velocity is then adjusted so that the middle node will be equispaced from the 
two adjacent nodes at the end of the time-step. Multiple collinear nodes are treated 
in a similar fashion. 

In both cases the treatment removes the singularity in [O]. It is shown that the 
modified matrix [O] possesses very desirable properties with regard to inversion by 
sparse matrix techniques. Owing to the necessity to manipulate CO] at each time- 

58,!95.‘2-3 
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step, an explicit ODE solution method was used. The method has been extended to 
solve two-dimensional problems. 

Baines and Wathen [85] have extended the method to solve a multicomponent 
one-dimensional problem. It is shown that there are definite advantages in using a 
separate node distribution for each component. Several one- and two-dimensional 
model PDEs have been solved. The number of nodes used and the size of the time- 
steps compare very favourably to those resulting from use of the unmodified MFE 
method. Wathen [86] has extended the analysis of the method. Issues, such as 
criteria for adding nodes and treatment of reflection of shocks off solid boundaries, 
must be resolved before the method becomes generally useful. 

Benner, Davis, and Striven [87] have also sought to avoid use of the penalty 
functions of Miller and Miller [64, 651. They retain Eq. (2.63) and the piecewise 
linear basis functions ak, but they replace Eq. (2.64) by 

E- Ek=O, 

where Ek is an error measure given as 

(2.66) 

E”=/fp[IM”+’ -w + pfk-Mk-‘I]. (2.67) 

The factor IMk+’ - Mkl + (M” - Mk -I(, obtained by approximating the integral 
from Xkp ’ to Xk of the absolute value of the second derivative of the piecewise 
linear function Ah, will be large when the slope A4 of Ah has a large jump at Xk or 
Xk - ‘. E is the average value of Ek over all elements. The aim is to equidistribute 
Ek so that dXk = Xk -Xk -’ will be smallest where JMk+’ - Mkl + JMk - Mkp’l 
is largest. 

Equations (2.66) and (2.63) for all k constitute a system of equations whose 
residual can be minimized by means of a modified Newton iteration to obtain 
values for Ak, Xk, and E at each time-step. However, Benner, Davis, and Striven 
prefer to separate the computation of the grid from the solution of the PDE in 
order to give faster convergence of a Newton iteration on Eq. (2.63) and to reduce 
the size of the system of equations that must be solved. Equation (2.63) is solved 
for a stationary grid, and the nodes are then placed so that, subject to limitations 
on maximum node separation and on the value of AXk/AXk ‘, the linear inter- 
polant of the square root of E” is distributed evenly over the elements. Use of the 
square root provides a form of measure smoothing. 

The solution of a scalar one-dimensional model PDE using 40 nodes was com- 
parable to the solution obtained by the MFE method of Miller and Miller. 
However, the comparison suffered a bit since the MFE method used only 21 nodes 
and since the method of Benner, Davis, and Striven encountered convergence 
difficulties at an outflow boundary. Extension of the method to multicomponent or 
two-dimensional problems was discussed. 

Lee and Ramos [SS] solved a flame-propagation problem using an adaptive 
finite-element technique. The PDEs were transformed from physical coordinates 
(X, t) to a normalized Lagrangian coordinate system (5, z), where 5 varied from 0 
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to 1. The transformation was defined by z = t, at/ax = p, and at/at = -p V, where 
V was the velocity and p the normalized density of the gas. The continuous solution 
A at time r, was approximated by 

Ak) = c ak(5) Akh,), k=l (2.68 ) 

where Ak is the value of the solution at node k for the current node distribution, 
and where the ak are linear basis “hat” functions defined by 

(2.69) 

The method of Galerkin was employed to obtain ODES for the solution at each 
node, and the ODES were solved using finite differences in time. 

The values of tk where changed every 10 time-steps, in order to concentrate the 
nodes in regions of steepest temperature gradient. The element with the largest 
temperature gradient was assigned the minimum node separation h, = A<,, 
dictated by physical considerations. The node spacing h for the other elements was 
adjusted to minimize the integral 

(2.70) 

subject to the constraint 

s ,:;d<=N-1. (2.71) 

The minimization yielded a differential equation for h constrained so the total 
number of elements was N- 1. The differential equation was solved analytically to 
obtain the new value of At for each element. 

The new basis functions thus obtained were used to define a new approximation 
to the solution. 

A:(L) = c a:(t) A:(L), 
k=l 

(2.72) 



2X4 HAWKEN, GOTTLIEB, AND HANSEN 

where the new nodal Ak, values were computed by requiring that 

1 d< (2.73) 

be minimized. An adaptive computation with 171 nodes gave results comparable to 
nonadaptive finite-element and finite-difference solutions using 901 nodes. 

In a later paper, Ramos [89] reports that a similar adaptive computation using 
37 nodes gives results comparable to a nonadaptive finite-difference method using 
272 nodes. Ramos points out that the algorithm used to compute the node spacing 
44: cannot, in its present form, deal with problems characterized by the presence of 
multiple moving fronts. 

2.3.2. Methods Based on Attraction and Repulsion Pseudqforces between Nodes 

In a number of methods, a node attracts others when a measure of the truncation 
error at the node is larger than average. If the measure is smaller than average, the 
other nodes are repelled. 

Rai and Anderson [90, 913 and Anderson and Rai [92] have developed one 
such method for one- and two-dimensional problems. They used an error measure 
Ej in numerical coordinates (<, , t). Various forms of Ei were used, including (8A/Xi (, 
I(~A/ag,)/(axi/ai’,)i, 182A/~<fj, and \8X,/at, ( + 1. l~YA/a<,j. The inclusion offunctions 
of aX,/ag, in the measures enhanced the smoothness of the transformation. 
Measure-averaging was used in the case of higher-order derivatives to avoid 
instabilities. 

The time dependence of Xi was computed at each node using a sum of pseudo- 
forces between nodes as follows. Consider a two-dimensional problem solved on a 
rectangular grid. Given a numerical space of N by M nodes, the partial time- 
derivative of <, at a fixed point in physical space was defined for each node k, q at 
its current location in physical space, by using the following formulation: 

E:,,,-yn 

rQ 
(2.74) 

,I=/,+1 

E?“’ is the error measure E, at node n, m; E y’, is an average of error measure El 
along a line of constant r, in physical space. r is the distance in the numerical frame 
between nodes k, q and n, m. Q is a positive power which, if it is small, will allow 
distant nodes to affect one another’s motion, resulting in a form of measure 
smoothing. An equivalent sum was used to compute d(ky/dt: 

at:q -= 
at x 

,,I?, E?. -EY 
rQ 

_ 1’: El” ;Q”Y], (2.75) 

The current transformation between frame (Xi, t) and frame (ti, t) was used to 
compute the corresponding node velocities (aXy/at, ax:“/&) from the 4, and t2 
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time derivatives. Constants i, and A2 were adjusted on each time-step, so that no 
node velocity could exceed a prespecilied value. The velocities constitute ODES for 
(X,, X,) at each node, which were solved, time-step by time-step, along with the 
ODES for A at each node, using the explicit finite-difference method of 
MacCormack [27]. 

1, and 1, were held below a prespecified value so that grid velocities were 
damped as the error measures became equidistributed. All grid velocities were 
exponentially damped if the Jacobian of the transformation at any node changed 
from the Jacobian at the start of the calculation by more than a prespecilied ratio. 
Unfortunately, limitation of Jacobian ratio tends to reduce the adaptability of the 
method. Grid distortion occurred when boundary nodes were forced to move 
tangentially to the domain boundaries while the forces on internal nodes were left 
unmodified, so that the internal-node velocities had significant nontangential com- 
ponents. “Reflection” of node properties about boundaries improved results. Given 
a real node, its image (with an identical value of error measure) was placed at an 
opposite and equal distance from the boundary. The image nodes were included in 
the force sums (2.74) and (2.75) so that the boundary nodes experienced tangential 
forces only, and near-boundary nodes experienced reduced nontangential forces. 

A one-dimensional version of this method worked well; however, in some two- 
dimensional problems failure to reduce truncation error occurred because large 
cross derivatives of the solution were present in sparsely noded portions of the grid. 
None of the measures used by Rai and Anderson estimated these cross derivatives, 
resulting in an inappropriate node distribution. The authors suggested the use of 
such measures as la’A/aX, ax, 6+X,1 or lZ3A/aX, 8X1 (7X,1 to improve performance 
but have not published any results to date. 

The truncation-error reduction achieved was equivalent to the reduction 
obtainable by a nonadaptive method that uses four times the number of nodes. The 
authors state that the computer time required to solve a simple problem using an 
adaptive grid was usually higher than that required to solve it using a fixed grid. 
The allowable time-step sizes were reduced where tine mesh clustering occurred 
because of the use of an explicit ODE solution method; moreover, adaptive mesh 
movement added significant computational overhead. In more complex problems, 
execution times for adaptive solutions have been smaller than those for nonadaptive 
solutions. 

In a later paper, Anderson [93] has indicated that this adaptive method is best 
suited for computation of time-asymptotic solutions and was originally developed 
for that purpose. As Anderson points out, a steady-state solver would take less 
computational effort to obtain the same results. Anderson [93, 943 has reviewed a 
number of alternate methods for computing node velocities and introduces some 
new ideas, as yet untested. 

Greenberg [95] has solved a one-component PDE transformed to computational 
coordinates (5, t) in which the nodes are equidistributed. The transformed PDE 
was solved time-step by time-step using an explicit central finite-difference method. 
After each time-step, central differences were used to compute the local gradient of 
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the solution as an error measure, E”. The error measure was employed to compute 
spring constants, K”“, which were used to define an ODE for 

AX” = jy” - y 1. (2.76) 

The ODE 

??f?= f K”” ,,X” _ f K”” AX”, 

??I=1 n, = 1 

(2.77) 

inspired by chemical-rate-constant equations, automatically ensures that the sum 

2 AX” (2.78) 
n=l 

remains constant. The form of the K”“’ was chosen to ensure that node separation 
would decrease in areas of large error measure at the expense of increase in node 
separation in areas of smaller error measure, subject to present limits on the maxi- 
mum and minimum allowed node separation. The K”” decrease in magnitude as 
the error measure is equidistributed. Equation (2.77) was linearized and solved 
analytically to determine the node distribution at each time-step. Preliminary 
results were obtained on some simple problems. Unfortunately, these problems did 
not test the method very thoroughly since they required only modest adaptation. 
Extension of the method to general-shaped multidimensional domains is under 
development. 

Madsen [96] has developed an adaptive method that is reminiscent of that of 
Greenberg [95]. The method has been applied to the solution of a two-component 
nonlinear set of model PDEs on a one-dimensional domain. The ODE for the node 
velocities, which bears a striking resemblance to the equation for node placement 
developed by Klopfer and McRae [26], can be expressed in the form 

3!!.$Y=(E)-E”, (2.79) 

where E” is the value of E, a weighted multicomponent error measure, for the inter- 
val between node n and node n - 1. Each component of E” consists of either the 
absolute value of an estimate of the spatial-truncation error in the approximation 
to the right-hand side of a PDE or the absolute value of one of the following quan- 
tities: the change of the value, the slope, or the curvature of each component of the 
solution from node n - 1 to node n. In order to smooth the node distribution, 
) AX”\ is also used as a component of E”. (E) is the average value of E” over all 
the intervals. The weighting constants are adjusted as the values of E” change with 
time so that (E) remains constant. 

If the node separation in a given interval is less than a specified minimum, the 
corresponding value of E” is reduced (i.e., the weight is reduced) to discourage or 
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prevent the nodes from approaching any closer. In order to ensure that (E) 
remains constant, the values of E” for each of the other intervals are increased in 
proportion to the amount by which the node separation in each interval exceeds the 
specified minimum separation. 

The system of PDEs, approximated using spatial central differences, and the grid 
velocity equation were solved simultaneously by using a modified form of the 
implicit ODE-solver of Gear [12]. The use of the adaptive method resulted in a 
significant improvement in the solution of a problem involving the collision of two 
waves. 

Adjerid and Flaherty [97] have employed, as the basis of an adaptive finite- 
element method, an equation identical to Eq. (2.79) except for the inclusion of a 
proportionality factor, A, on the right-hand side. The error measure E” was 
obtained by computing the integral of a function of discretization error from X” ’ 
to X”. The term (E) was eliminated by subtracting the basic equation on two 
adjacent elements to obtain a tridiagonal system of equations for node velocities, 
with rows given by 

j-+1_2p+k’-1= -i[E”+‘-E”,. (2.80) 

After each time-step, the value of (E) is compared to a tolerance. If (E) exceeds 
the tolerance, then every element is split in half. If (E) falls below one-tenth of the 
tolerance, then every other node is removed. Removal of every second node typi- 
cally only doubles (E) on the next time-step. Hence, the above strategy ensures 
that the number of nodes remains constant for long periods of a calculation. 

A number of viscid model PDEs have been solved. The above set of ODES, a set 
of ODES obtained by discretizing the model PDEs using a Galerkin procedure with 
linear basis functions, and a set of ODES that estimates the discretization error 
were solved simultaneously with a modified form of the stiff ODE solver of Gear 
[12]. A large value of /z accelerated equidistribution of discretization error but also 
increased stiffness and, for reasons not completely understood by Adjerid and 
Flaherty, caused inappropriate movement of the nodes in some cases. Initial results 
for problems requiring modest adaptivity were good. 

Adjerid and Flaherty [98] improved the method in a number of ways. These 
included an heuristic procedure for automatic selection of appropriate values 
for 1” and provision for local, rather than global, refinement of the grid. Problems 
requiring substantial adaptivity were solved. Future plans include extension 
to solution of problems in higher dimensions and the use of higher-order basis 
functions. 

Winkler, Norman, and Newman [99], extending the work of Tscharnuter and 
Winkler [ 1001 and Winkler and Newman [ 1011, have applied an adaptive method 
to the determination of gas flows and electromagnetic radiation fields during star 
formation. The equation for node placement can be expressed in the form 

(2.81) 
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where 

~“=W.ALX”+O., 
[Ax”]’ 

+S2,dfl”+R,; CAB”1 2 
ACI ,,+I Acc”-l 

AP ‘+’ AK- ’ 
M”-+f” I 

+UM +n M”-““- 1 ~%-a,, +xL’,E;. 
M”“+M”-’ k 

(2.82) 

When Eq. (2.8 1) is satisfied, each term in Eq. (2.82) is more or less equidistributed 
over the grid in rough proportion to the relative size of the corresponding 
weighting constant w,, w,;, SL,, Q2,,, wM, Sz,, or Qk. 

Aa” and Afl” are normalized node separations defined by 

(2.83) 

and 

If only the weighting constant w, was nonzero, the node coordinates X” would be 
equally spaced apart; however, if only 52, was nonzero, the change in the logarithm 
of X” would be equidistributed over the grid. The latter node distribution is used 
in preference to the former for the problems solved. The change in M”, the 
Lagrangian mass variable, would be equidistributed if only Ok was nonzero. If only 
Q,,,, was nonzero, the change in the logarithm of M” would be equidistributed over 
the grid. 

The summation contains solution-error measures usually defined as 

(2.85) 

where G; is the value at node IZ of various properties of the gas or electromagnetic 
radiation field. The normalization results in equidistribution of the change in the 
logarithm of G;I. In some cases, the denominator contains a “floor” value to prevent 
division by zero. Some error measures contain no denominator; in those cases, the 
change in G;i is equidistributed across the grid. 

The second or fourth term in Eq. (2.82) is used to counteract a tendency for 
nodes to cross in some problems. These terms have a function similar to that of the 
penalty-function terms of Miller and Miller [64, 651. 

The equations describing the radiation field and gas were discretized using finite 
differences and were solved along with the equation for node placement using an 
implicit ODE solver with second-order time accuracy. Because of the form of 
Eq. (2.81) the matrix to be solved was block pentadiagonal. One-dimensional 
spherically symmetric Euler equations with artificial viscosity-tensor terms were 
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used to describe the time evolution of the gas. In one calculation using 292 nodes, 
node separation varied over five orders of magnitude to resolve the solution; time- 
step size exceeded the explicit CFL limit by a factor of 5 x 105. In another problem 
using 80 nodes, node separation varied by a factor of lo4 and the CFL limit was 
exceeded by nine orders of magnitude. Very thin shock waves were well resolved 
without evidence of Gibbs’ oscillations. 

Winkler, Mihalas, and Norman [102] introduce the additional terms 

into Eq. (2.82). The terms encourage node separation (if w,,, # 0 and o,~, # 0), or 
the change in the logarithm of X” (if Q,,, # 0 and Qmln # 0), to remain between the 
specified minimum and maximum. The integer power Q is typically set to four. The 
authors also take the square of the error measures containing absolute values in 
Eq. (2.82), so as to eliminate the need for the use of absolute values. 

Winkler, Mihalas, and Norman have altered Eq. (2.81) into the form 

(2.87) 

so as to provide temporal smoothing. The temporal weight, w,, is nonzero only 
when the solution-error measures are decreasing with time and is proportional to 
the square of the sum of the fractional change in the error measures, as compared 
to previous times. The net effect is to prevent the large reduction of time-step size 
that results from the brief loss of node concentration when the solution is tem- 
porarily smooth, as occurs during the reflection of a shock wave off a wall. Winkler, 
Norman, and Mihalas [IO31 provide a comprehensive discussion of all aspects of 
the physics and numerical solution procedures used in their work. 

Dorli and Drury [104], inspired by the work of Winkler et al. [99-1031, have 
produced a similar adaptive method, which has also been applied to the solution 
of one-dimensional Euler equations containing artificial viscosity terms. They define 
the K-component error measure 

(2.88) 

where d,4: = At -AZ- ’ is the change in the kth component of the solution in the 
interval between node n and node n - 1. fi” and cri are scale factors associated 
respectively with the spatial coordinate and the solution; in the simplest case these 
scale factors have the value one, so that E” is proportional to the arc length from 
node n to node n - 1 of the solution. Sensitivity of the error measure was improved 
in spherically symmetric problems by using the arithmetic mean of X” and X” ’ for 
/I” and the harmonic mean of Ai and A;f- ’ for cc;. A form of E” containing second- 
order spatial derivatives has been used in some problems. 
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The nodes are moved to make fi”/dX” proportional to the time- and space- 
averaged value of E” by requiring that 

where ye” is a time-smoothed quantity defined by 

(2.89) 

which is, in essence, a time-differenced equation for the spatially smoothed quantity 
y” defined by 

(2.91) 

The last expression is a difference equation for the variation of /T/AX” from 
node to node and is shown to be equivalent to requiring that the ratio 
B”/AX”/[/Yp’/AX” -‘] be between y/[y + l] and [y + II/y. As ‘/ is increased, the 
response of /Y/AXn to the value of the error measure at distant nodes is increased. 
The value of y is selected so that AX” will not vary by more than 20 or 30% from 
node to node. 

&I is the value of q” at the previous time-step. As T/At is increased, the response 
of p”/AX” to the value of the error measure at previous time-steps is increased or, 
equivalently, the response to the values of the error measure at the current time- 
step is diminished. T is, in effect, a damping time-constant, and the damping 
becomes significant when r is a large fraction of the time-step size At. Small values 
of r allow very fast response time but result in a loss of node concentration if two 
waves pass through one another. Larger values of r reduce the loss of concentration 
but may also diminish the ability of the nodes to follow rapidly moving features. 

The difference between the current and old values of 9” divided by At can be 
expressed as a function of node velocities. Hence, Eq. (2.89) could be expanded into 
a matrix equation for the node velocities. The expressions are reminiscent of some 
of the penalty terms used in Miller 1741 but result in matrices of larger bandwidth. 
However, Dorfi and Drury instead make use of a technique similar to those of 
White [29] and of Winkler, Norman, and Mihalas [103]. The system of PDEs 
describing the flow is differenced and solved simultaneously with Eq. (2.87) by 
means of a Newton-Raphson iteration, which requires the computation of a 
Jacobian matrix. Because of the form of q”, the Jacobian is block pentadiagonal. 
The iteration is also applied to a uniform grid with fixed initial-condition data to 
obtain the initial grid for a problem. 

A number of problems have been solved by Dorfi and Drury with results 
comparable to those of Winkler et al. [99-1031. Note that the calculations of the 
former authors required a much smaller number of weighting constants than the 
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calculations of the latter authors. Dorli and Drury suggest that their method can 
be extended to multidimensional problems by defining E” and v]” as tensors. 

Gnoffo [105, 1061, making use of the work of Dwyer et al. [33] and that of Rai 
and Anderson, used an error measure to define tension-spring forces between nodes 
on a two-dimensional grid. The nodes are moved so as to equidistribute the spring 
force along lines of constant computational coordinate. 

The force between adjacent nodes along a line of constant computational coor- 
dinate was defined as 

F=KAS, (2.92) 

where AS is the arc length between the two nodes and K is the local spring 
constant. Typically, K was of the form 

K=I+E, (2.93) 

where E is an error measure. E was usually a weighted sum of the magnitudes of 
spatial derivatives of each component of the solution A. The adaptive procedure 
was applied along one set of computational coordinate lines only. The nodes were 
moved periodically every few time-steps using the following iterative procedure. 

One curve of constant computational coordinate at a time was selected, and the 
nodes were moved along this curve using the formula 

AS” = 
S tot 

K” Cm (l/K”‘)’ 
(2.94) 

so as to equidistribute the spring forces K” AS”. The nodes on a curve have been 
numbered consecutively for explanatory convenience. AS” is the arc length between 
nodes n and n - 1; K” is the spring constant between the two nodes; S,,, is the total 
arc length. Information on the soution was transferred from the old grid to the new 
grid using an interpolation function, and new values of K” were computed. Use of 
Eq. (2.94) and the interpolation process was repeated until the node locations 
converged. An averaging formula was applied to the spring constants to smooth 
out their node-to-node variation, and node movement was damped by taking a 
weighted average of the old and new node locations from iteration step to iteration 
step. The iterative procedure was repeated for each curve of constant computational 
coordinate. A similar formulation was used in some cases to concentrate nodes at 
predetermined locations. In that case, K” varied exponentially with n, thus inducing 
a systematic increase or decrease in node separation. 

The solution PDEs were discretized using a finite-volume method. A tinite- 
volume method is a geometrically conservative finite-difference approximation to 
the integral form of the PDEs. The domain is broken up into control volumes and 
finite-difference equations obtained from the conservation of inter-volume fluxes. 
The system of equations maintains conservation of mass, energy, and momentum 
from element to element. In Cartesian coordinates, the finite-volume equations 
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reduce to those of the explicit method of MacCormack [27]. Hindman [21] 
discusses the advantages of, and the pitfalls involved in, various conservative and 
nonconservative methods of expressing differential equations. 

The procedure has been applied to solve the Navier-Stokes equations for com- 
plete (forebody and afterbody) flowlields around blunt bodies. Time-stepping was 
applied until a steady-state solution emerged. Excellent results were obtained for 
moderate values of the weighting constants in the expression for K, but solution 
oscillations were encountered if the weighting constants used to compute E were 
too large or if flows with Reynolds number exceeding 5 x 10’ were simulated. 

Nakahashi and Deiwert [107] have extended the method of Gnoffo [lOS, 1061 
to include torsion springs in addition to tension springs. They adjust the node 
distribution in a two-dimensional domain so as to enforce grid orthogonality as 
well as adaptivity. 

Adaptation is applied in one direction of computational coordinate at a time. For 
instance, given nodes with indices i, ,j, the index i is fixed, and the corresponding 
nodes with varying index ,j are caused to move along a curve whose shape is fixed 
by the original positions of the nodes. The node at location i, j is moved along the 
line of constant i in response to tension-spring forces from node i, j + 1 and node 
i, ,j - 1 and in response to torsion-spring forces from node i - 1, j. In the latter case, 
if grid orthogonality is desirable, a straight reference line is defined that is 
perpendicular to the line of constant i and that intersects it at node i, j. The 
torsion-spring force is proportional to the angle between the reference line and a 
straight line joining node i, j to node i - 1, j. In practice, the angle is expressed in 
terms of the projection of the line joining node i, j to node i- 1, j onto the line of 
constant i. Nakahashi and Deiwert have defined alternative reference lines that 
follow stream lines or are smooth extensions of the line of constant j that passes 
through node i, ,j. In practice, all three types of reference lines are used with 
different weights. 

The node location formula is written as a force balance at each node in order to 
form a tridiagonal system of equations that may be solved for the optimal position 
of each node along the line of constant i. The force balance at node i, j is 

K, i CS,. , + I -A’,.,]-K,,,. ~[S,,,-S,,,-,l-T,~,.jCS,,,-~;.iI=O. (2.9’) 

S,, j is the arc length between node i, 1 and node i, .j along the line of constant i. 
Kj, , is a tension-spring constant between node i, j and node i, j + 1 that is usually 
proportional to the gradient of the solution between said nodes. In some cases, a 
stretching function is added to Ki,,. The stretching function varies in such a way 
as to impose a systematic increase or decrease in node separation along the line 
of constant i. For some problems it is desirable to smooth the tension-spring 
constants or solution components contained in the tension-spring constants by 
averaging them over three adjacent nodes. Adjustment is also made near bound- 
aries between regions with differing adaptive coefficients in order to prevent 
excessive changes in node separation. 
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The arc length s,, is the projection of the line between node i, j and node i- 1, 
j on the line of constant i. 3, j is adjusted so as to increase monotonically along the 
curve of constant i in order to prevent node crossing when the system of equations 
is solved. The torsion-spring constant Tim I,i is chosen to be a small fraction of the 
proportionality factor used in the tension-spring constants so that orthogonality or 
other grid properties will be most stringently enforced in regions of small solution 
gradient. 

Only node i- 1, j is allowed to influence the position of node i, j by means of 
the torsion term, so that adaptation along lines of constant i can be applied in a 
marching manner in the direction of increasing i. Interpolation is used to transfer 
information from the old grid to the new grid after all lines of constant i have been 
adapted. If required, the adaptation is also applied along lines of constant j. 

The method was applied to the solution of the thin-layer Navier-Stokes equa- 
tions for subsonic and supersonic flow around aircraft afterbodies having sonic and 
supersonic underexpanded jets. The initial grid was generated by an algebraic 
method. Adaptation was applied to selected parts of the grid two or three times 
during the course of implicit calculation of the steady-state solution. The results 
showed significant improvement in definition of flow discontinuities such as shock 
waves and slip surfaces. Application of the method to similar problems is discussed 
in great detail in Deiwert, Andrews, and Nakahashi [lOS]. 

The method has been extended to three-dimensional geometries by Nakahashi 
and Deiwert [ 1091. They suggest that the method can be applied to unsteady flow 
problems as well, by evaluating grid velocities after every adaptation. 

Eiseman [ 1 IO] has applied an adaptive method on two-dimensional grids with 
rectangular cells, An optimal position is computed for each node in turn. Since the 
grid is rectangular, each node is connected by a grid line to four neighbours. 
A relative-position vector is computed for each neighbour. An error measure is 
computed for each of the relative-position vectors. The error measure is a sum 
of cell areas and of cell-area weighted quantities in the two cells to each side of 
the relative-position vector. These quantities include the magnitude of solution 
gradient, of grid-line curvature, of departure from grid-line orthogonality, and of 
departure from grid conformality. 

The node is moved in response to the error measures as follows. The four 
relative-position vectors form two pairs of opposing vectors. Consider a pair of 
opposing relative-position vectors R + and R - with associated error measures E+ 
and E-. If Ef ((R + I( exceeds E- ((R- I(, then a displacement vector 

E+ IP+lI-E- I/R-II R, 
3[E+ + E-1 /IR+ II 

is computed. Otherwise the displacement vector 

(2.96) 

E- I/R-/l -Et IIR+/I R 
3[E+ SE-] I(RP/( 

(2.97) 
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is used. In effect, the displacement is along a line of constant computational coor- 
dinate. The other pair of opposing relative-position vectors is used to compute a 
second displacement vector. The new position of the node relative to the old posi- 
tion of the node is the sum of the two displacement vectors. The factor of three in 
the denominator of the displacement vectors is a safety factor to prevent excessive 
deformation of cells because of displacement of the node. Additional limits on 
displacement are employed in some cases. Eiseman discussed variants of the proce- 
dure. After the entire grid has been adapted, the node distribution is smoothed 
using a procedure described in Eiseman [ 1121 to remove high-frequency 
oscillations in node position. 

The method has been applied only to adapt grids to simple test functions rather 
than to solutions generated by PDEs. Extension of the method to higher 
dimensions is discussed. Eiseman [ 11 l] has applied similar procedures on two- 
dimensional grids with triangular cells. He also discusses strategies for addition and 
removal of nodes. 

Eiseman [ 112, 1131 applies one-dimensional adaptation along lines of constant 
curvilinear coordinate on two- and three-dimensional grids using a closely related 
procedure. As in Nakahashi and Deiwert [107], adaptation is applied in a 
marching manner in alternating directions. Nodes were displaced along each line of 
constant computational coordinate so as to equidistribute error measures computed 
between pairs of nodes. A projection technique similar to that of Sanz-Serna and 
Christie [ 313 was employed. The procedure has only been applied to adapt grids 
to simple test functions. 

The one-dimensional method of Davis and Flaherty [ 1141 may be interpreted as 
using pseudoforces to move nodes. The PDEs were solved with fixed time-step 
using a finite-element formulation in computational coordinates (5, t). Rectangular 
elements, transformed from trapezoidal space-time elements in physical coordinates 
(X, t), were used. As a truncation-error measure, the authors used the product of 
grid-spacing raised to the power “m” times the magnitude of the mth derivative of 
the solution with respect to X. This expression is related to the truncation error 
expected for the order of basis function used. Both piecewise linear (m= 2) and 
piecewise cubic Hermite (WI = 4) finite-element basis functions were used. 

The nodes were moved after every time-step so as to equidistribute the error 
measure by requiring that the node coordinates satisfied 

(2.98) 

The m th derivatives, approximated by finite differences, were given lower bounds 
to ensure stability of node movement. An under-relaxation iteration was used to 
solve Eq. (2.98), subject to constraints on first and last node coordinates and defor- 
mation of the trapezoidal space-time elements. The resultant node positions were 
then used for the next time-step, thus determining the shape of the space-time 
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elements used in the finite-element calculation of A”. An attempt to use higher- 
order extrapolation of node positions led to wild oscillations in the grid. 

A number of problems requiring modest adaptation were solved. Flaherty, Coyle, 
Ludwig, and Davis [ 1151 reported difficulty in their attempts to extend the method 
to compute node velocities. The subsequent analysis of Coyle, Flaherty, and 
Ludwig [116] led to the method of Adjerid and Flaherty [97,98]. 

2.4. Closing Discussion of the Adaptive Methods Surveyed 

The methods for solving the ODES obtained from the discretization of PDE 
problems vary considerably from author to author. Some authors were able to use 
explicit time-stepping formulae because the particular problems solved did not 
exhibit stiffness. In nonstationary gasdynamics applications, the methods can be 
adapted to use stiff-ODE solvers. As a penalty for obtaining larger time-steps, 
however, one generally must solve large matrix systems. 

For gas flows having moving regions of rapidly changing solution, it is probably 
most desirable to move the nodes and compute the physical solution 
simultaneously in order to keep node distribution suited to solution variation. For- 
tunately, methods that move the nodes periodically or alternately with a time-step 
solution of the ODES for the physical variables A” can be altered so that “optimal” 
node velocities can be derived from the difference between old and “optimal” node 
positions. The node velocities constitute a set of ODES for node position, which can 
be solved simultaneously with the ODES for the A”. Even though a larger set of 
ODES must be solved simultaneously, the increase in computational cost is com- 
pensated in part by the fact that interpolation is not needed to transfer information 
from a old to a new grid. 

The most promising two-dimensional methods are those of Yanenko et al. 
[52-541, Brackbill and Saltzman [45-481, and Nakahashi and Deiwert [107, 1093, 
which control grid orthogonality and smoothness, and that of Miller and Miller 
[64, 651, which is not as sensitive to lack of smoothness or orthogonality. 

The PDE used by Yanenko et al. for computing node movement derives its time 
dependence from the use of the Lagrangian measure E,. In many problems, this 
might not be an appropriate measure. An alternate measure that will result in a 
time-dependent PDE for node movement is not immediately apparent. 

Brackbill and Saltzman’s method is easily converted to allow simultaneous com- 
putation of node position and the solution at each node; when adapted for use with 
a stiff-ODE solution algorithm, their method should work well with stiff problems. 
One technique of conversion, which White [29] has used, involves expressing A 
and X as averages of their values in the current and next time-steps and solving the 
resulting equations using a Newton-Raphson iteration. Alternatively, as discussed 
by Anderson [93] and Hindman and Spencer [SS], the time-independent equation 
for node coordinates developed by Brackbill and Saltzman can be converted into 
a PDE for node velocities by use of differentiation with respect to time. As in the 
work of Hindman and Spencer, it may be necessary to periodically apply the 
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equation of Brackbill and Saltzman to combat a tendency for node concentration 
to relax. 

Nakahashi and Deiwert have obtained results equal to or better than those of 
Brackbill and Saltzman, and their method has been applied to more elaborate flow 
problems. Implicit time-asymptotic solutions of two- and three-dimensional flows 
about aircraft afterbodies have been obtained. The method may also be applied to 
time-accurate solution of unsteady flows; in this case it may be useful, though 
perhaps difficult, to modify the method to allow simultaneous computation of the 
solution and node positions. 

The MFE method of Miller and Miller uses a very natural and elegant formula- 
tion to control node movement. The node position and node solution are both 
obtained by the equidistribution of one error measure: the residual of the PDE 
written in finite-element form. Unfortunately, inversion of the large matrices 
associated with the method, can consume a large proportion of total computational 
time, although this may be offset by the large time-steps an implicit method can 
take. The modifications of the MFE method by Mueller and Carey [77,78] and 
Herbst et al. [79-821 result in a smaller truncation error than that of Miller and 
Miller but suffer from the same problems of large computational overhead. If 
explicit time-stepping is acceptable, the simplification of the MFE method due to 
Dukowicz [76] reduces the size of the matrix system that must be solved. The 
various types of penalty functions used in the MFE variants above to prevent node 
crossing might well be of value in other adaptive methods. Elimination of the need 
for penalty functions or implicit time-stepping by use of the techniques of Wathen 
and Baines [84-861 also bears further study; however, one must add and remove 
nodes during the course of the calculation. 

If one must add or delete nodes, the method of node adjustment used by Petzold 
[57] minimizes the impact on accuracy and stability and therefore on allowable 
time-step size. The approach to node addition and removal favoured by Adjerid 
and Flaherty [97] is simpler but not as flexible. 

The methods of both Dwyer et al. [33339] and Rai and Anderson [9@92] 
probably consume less computer time than those above. Their behaviour for two- 
dimensional problems might be improved significantly by application of a measure 
of grid orthogonality. The coordinate orthogonalization techniques of Potter and 
Tuttle [40] or of Anyiwo [44] are also of value. The method of Gnoffo [105, 1061 
also fails to control grid orthogonality in two-dimensional problems and has run 
into difficulties similar to those experienced by Dwyer et al. and Rai and Anderson; 
the torsion spring interactions introduced by Nakahashi and Deiwert [ 107,109] 
seem to have eliminated the difficulties. 

The error measures used by Sanz-Serna and Christie [31] and Revilla [32] bear 
a striking resemblance to those of Dwyer et al. [33339]. The numerical-quadrature- 
based transformation used by Dwyer et al. may be more expensive than the projec- 
tion technique of the former authors. The adaptive methods of Sanz-Serna and 
Christie and of Revilla can be extended to two-dimensional problems in a manner 
similar to that used by Dwyer et al. 
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It is ppssible to obtain a simpler set of equations in a finite-element formulation 
by using a separate error measure to control node movement in a manner similar 
to that used in finite-difference methods. Benner, Davis, and Striven [87] and 
Adjerid and Flaherty [97,98] have begun work in this area but their methods are 
as yet unperfected. 

The work of Lee and Ramos [SS, 891 provides a natural alternative to inter- 
polation when the solution is being transferred from the old grid to the new grid 
in finite-element methods. 

The methods of Rai and Anderson [90-92-J, Greenberg [95], Madsen [96], and 
Adjerid and Flaherty [97] compute node velocities in response to deviation of an 
error measure from some average value. This approach inherently results in a 
proportionality factor for which the optimum value will vary greatly from problem 
to problem or during the course of a solution. Too small a proportionality factor 
means that nodes will be unable to follow moving waves, while too large a propor- 
tionality factor will cause nodes to outrun the waves or oscillate back and forth 
from time-step to time-step in the region of the waves. It may not be possible to 
choose an appropriate proportionality factor in problems containing multiple 
regions with disparate wave velocities. The methods are probably best suited to 
computation of the time-asymptotic solutions of fairly simple problems where the 
deviation of an error measure from some average decreases with time. Note, 
however, that Adjerid and Flaherty [98] have introduced dynamic specification of 
the proportionality factor and have obtained improved results. 

Causing the nodes to follow the solution characteristics, as done by Kansa et ul. 
[42], may create problems when the characteristics intersect, such as during 
the formation of a shock wave. Auxiliary node-redistribution schemes must be 
employed to correct the tendency of the nodes to cross. The initial work of Kansa 
et al. included use of penalty functions, introduced by Miller and Miller [64, 651, 
as a means of preventing node crossing. This procedure was rejected because of a 
tendency to increase the size of the residue R, which led to greatly reduced time- 
step sizes. The method of Ghia et al. [43] also causes the nodes to follow the solu- 
tion characteristics, but the tendency of the nodes to cross is reduced by increasing 
the coefficient of the second-order derivative in the equation defining node move- 
ment. A similar “over emphasis of diffusion” strategy contributes to stability in the 
later work of Miller [74] and an associate, Djomehri [73]. The method of Petzold 
[57] also causes nodes to follow the characteristics, but the tendency of the nodes 
to cross is reduced by the use of penalty functions. The penalty functions used in 
the MFE method of Miller and Miller [64, 651 and its variants would probably be 
more effective than those of Petzold in preventing node crossing. 

Adjerid and Flaherty [97, 981 eliminate an error-measure average from their 
basic equation for node velocities by using the difference of the equations at 
adjacent elements. Dorti and Drury [104] and Winkler et al. [99-1031 eliminate 
a constant of proportionality by using equivalent manipulations. The net effect in 
the three methods is to extend the influence of the value of error measure at a 
particular node to node movement at adjacent nodes. In the methods of Dorfi and 

5x1 95’2-4 
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Drury and of Winkler et al. an especially large range of influence of local error 
measure has resulted in excellent solutions of one-dimensional test problems. In 
addition, the work of both authors can be adapted to develop alternative penalty 
functions for methods that need them. 

Anyiwo [44] describes his adaptive method sketchily, but his paper contains 
some useful ideas applicable to the methods of other authors. These ideas include 
the use of nonzero c?X,/dt in an alternating-node-movement method and of an 
explicitly orthogonal transformation between physical and computational 
coordinates. 

The one-dimensional method of Pierson and Kutler [24] is rather expensive 
since it uses Chebyshev polynomials in the computation of optimal node positions. 
This method has not been extended to multidimensional problems and exhibits a 
negligible truncation-error reduction, as compared to the truncation-error reduc- 
tion obtainable using other methods. Pierson and Kutler, as well as Carcaillet, 
Dulikravich, and Kennon [59], use a simplex method to position nodes so that a 
global error measure is minimized. A simplex-method approach to placing nodes 
has a greater ability to deal with grids having difficult properties, such as a negative 
Jacobian of the transformation, than does a differential-equation approach. The 
simplex-method approach may also consume more computer time. 

Methods that depend on explicit calculation of PDE truncation error, such as 
that of Klopfer and McRae [26], are probably awkward to apply for general PDE 
solvers. However, the truncation error can be estimated indirectly by computing the 
right-hand side of a PDE twice with different node spacings and taking the 
difference, as was done by Madsen [96]. 

All the methods require the specification of weighting constants. Hence, the solu- 
tion of a problem often involves a cycle of choosing weighting constants, submitting 
the problem, and observing the behaviour of the solution to determine if the 
weighting constants should be changed and the problem resubmitted. The reduction 
of the number of weighting constants or their automatic selection is an area that in 
the future ought to receive more attention in adaptive techniques. 

Much work has yet to be done on developing improved adaptive methods, but 
the field certainly holds great promise in the reduction of computational costs in 
many areas of numerical PDE solution. 
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